UMass-Amherst Symposium on the Health and Transportation Safety Impacts of Marijuana Legalization

by Tracy Zafian, Research Fellow

 

weed

In early April, the University of Massachusetts-Amherst School of Public Health and Health Sciences hosted a symposium on “Marijuana Legalized: Research, Practice, and Policy Considerations” to examine and discuss the potential public health and transportation safety impacts of marijuana legalization in Massachusetts. Massachusetts legalized marijuana for recreational use through a ballot initiative in the November 2016 election, and retail marijuana sales were permitted in the state in July 2017.

The keynote speaker at the symposium, Darrin Grondel, heads the state Traffic Safety Commission in Washington State and has over 25 years of traffic safety and law enforcement experience. His talk and webinar held the same afternoon, focused on the issues and impacts of impaired driving and drugged driving, and considerations for states developing policies and regulations in response to marijuana legalization.  The slides from the webinar are available here. Washington State was one of the first states to legalize marijuana for recreational use, in 2012, and his presentation focused on Washington’s experiences after legalization. For example, 2014 FARS (Fatal Accident Reporting System) data for Washington revealed that speeding occurred in 35.8% of all fatal marijuana driving cases compared to 25.9% of non-alcohol or non-drug cases.  Also, in Washington, after legalization, more drivers were found to be THC-positive one year after retail sales began, in 2014 than immediately before the sales. THC — tetrahydrocannabinol — is the principal psychoactive chemical compound in marijuana.

Unlike with alcohol and Blood Alcohol Concentrations (BAC), there is no THC-level that has been scientifically proven to be the level above which a driver would be significantly impaired. Alcohol stays in the bloodstream whereas THC goes to fat cells including in the brain.  As discussed in a previous Innovative Outlook article, there are tests and technology, including smartphone apps for assessing impairment.

Other presenters at the symposium included Professors Jennifer Whitehill and Elizabeth Evans, from the UMass-Amherst School of Public Health and Health Sciences, and Cheryl Sbarra, senior staff attorney and Director of Policy and Law with the Massachusetts Association of Health Boards. Professors Whitehill and Evans are currently finishing a study with the UMass Donahue Institute and the Massachusetts Department of Public Health to estimate marijuana use rates before legalization.  As reported in Daily Hampshire Gazette, Whitehill did not discuss any detailed results but she did speak about some general findings and areas for future research.  From that news story: “One thing Whitehill noted is that when looking at fatal motor vehicle crashes, more attention needs to be placed on testing for marijuana and other drugs so as to understand the impact that they might be having on drivers.” She indicated that currently, only about 75% of drivers killed in a crash are tested for drug use after the crash. For non-fatal crashes, almost no drivers are tested for drugs. Drug testing more drivers in non-fatal crashes are one potential future research area. Another is the development of better quantitative methods and measurements for assessing impairment resulting from marijuana use.

For their presentations, Professor Evans discussed gender differences with regards to marijuana use, and lawyer Sbarra talked about municipalities regulating marijuana at the local level.

Among those attending the symposium were local health officials, local police, representatives from the marijuana industry, academic researchers and two members of the Massachusetts Cannabis Control Commission which is charged with implementing and administering laws for adult marijuana use and access in Massachusetts.

 

Teaching Drivers to Be Safer and More Eco-Friendly

by Tracy Zafian, Research Fellow

eco
From KIA motors- This system restricts engine and transmission performance in favor of fuel economy

Real-time feedback to drivers can help them improve their fuel efficiency and safety. The results of a recent UMass Amherst field study on the Effectiveness of Eco-Driving: Real-Time Feedback and Classroom Training, were presented at the 2018 Transportation Research Board Annual Meeting, by UMass-Amherst graduate student Tao Jiang.

The presentation summarized an UMass-Amherst study undertaken as part of MassDOT Office of Transportation Planning, Research Section and funded with Federal Highway Administration (FHWA) State Planning and Research (SPR) funds. UMass-Amherst Professors, and UMass Transportation Center Research Affiliates, Dr. Daiheng Ni and Dr. Song Gao, oversaw the study. The goal of the project was “to identify and test techniques for modifying driver behavior to improve fuel economy, reduce emissions, and improve safety, in furtherance of the mission and goals of the GreenDOT Implementation Plan.”

Motor vehicles are major contributors to air pollution, and according to the U.S. Environmental Protection Agency (EPA), are responsible for close to half the volatile organic compounds that create smog, more than half the nitrogen oxide emissions, and approximately half of the toxic air pollutant emissions in the U.S.

As discussed in the research report, three major characteristics of driving behaviors to improve fuel efficiency, reduce emissions, and improve safety are:

  • Driving smoothly without much acceleration, idling, or traveling at very low speeds (such as in congested stop-and-go traffic).
  • Anticipating traffic and being vigilant about other vehicles in traffic with you and other drivers’ behaviors.
  • Following speed limits on highways and adjusting speeds as needed for adverse conditions.

The study was conducted with 133 MassDOT-owned vehicles (heavy vehicles excluded) and the employees who drive them.  The study included two types of interventions to modify driver behaviors. The first was the installation of an in-vehicle device that provided real-time feedback, including weekly emails, on each driver’s performance over a two and a half month period. The second was a 1.5-hour classroom training on eco-driving. There were four participant groups:  one that received both interventions, one that received real-time feedback only, one that had the classroom training only, and one that had no intervention. Participants’ driving behaviors were evaluated before the intervention phase, during the intervention phase, and afterward.

Major conclusions from this research were as follows:

  • Real-time feedback had a significant impact in reducing speeding and aggressive acceleration.
  • Combined effects of real-time feedback and classroom training contributed to a 0.89 mile per gallon improvement in fuel economy.

The study recommended that both real-time feedback and training, as well as periodic follow-up and monitoring, will maximize the effectiveness of such eco-driving interventions.

Zipper UP – Lane Merge Design – Part 2

by Tracy Zafian, Research Fellow

merge

The March Innovative Outlook (IO) discussed the first part of a University of Massachusetts (UMass)-Amherst study that evaluated different signage options to encourage more zipper merging when two lanes of traffic are merging into one. Here we discuss the second part of the study, involving testing the first phase results on a full-immersion driving simulator to analyze driver behaviors and decision-making in different scenarios where two lanes are merging into one.

The simulator evaluation was presented briefly at the Road Simulation and Safety Conference in the Netherlands in October 2017, and additional results were shown at the annual Transportation Research Board meeting in Washington, D.C. in January 2018.

Ideally, for zipper merges, similar levels of traffic occupy the left and right lanes approaching the merge. The vehicles from both lanes then take turns moving into the single lane, alternating from the left lane and then from the right lane, vehicle by vehicle, as in the two sides of a zipper coming together. For the first phase of the UMass study, drivers were surveyed about their perceptions and preferences of different road signs for a merge ahead and how they respond as drivers when shown different signs. One of the signs in the study was the W4-2 sign, also known as the “Lane Ends” sign, defined in the Manual on Uniform Traffic Control Devices (MUTCD); it’s the top sign in the figure. The other signs had been used in previous signage studies conducted by the Federal Highway Administration’s Human Factors Laboratory.

Based on the results of the earlier driver surveys, three different merge signs were used for the simulator part of the study: the standard W4-2 sign, a sign showing an alternative merge graphically, and a sign with “Alternate Merge” in words. There were 12 different scenarios tested on the simulator. In addition to varying the signage between the scenarios, two other variables were changed as well: which lane the driver’s vehicle started in at the beginning of the scenario (left lane or right lane) and the surrounding traffic conditions (vehicles in front of or adjacent to the driver’s vehicle). After the simulator drives, study participants were given a questionnaire regarding their perceptions of the different merge signs.

Not unexpectedly, since the standard merge sign (W4-2) is already in use, the standard merge sign had the strongest results in terms of driver recognition and comprehension. Drivers were found to be most likely to make lane changes upstream of the merge in the simulator scenarios with the standard merge sign. At the same time, however, the questionnaire results indicated that the standard merge sign was the least preferred sign to promote even merging from the left and right lanes. Another result, which differed from the results of the earlier driver surveys, was that the “Alternate Merge” sign with words was no longer among the most preferred signs for promoting even merging. Some participants in the simulator study felt that the “words were harder to process than pictures” and that the sign has confusing wording. The majority of participants preferred the graphic alternative merge sign for promoting even merging.

Two other interesting results were seen across the simulator scenarios: (1) participants were much more likely to switch lanes upstream of the merge intersection when they were following vehicles that had already merged than when they were adjacent to other vehicles, and (2) participants were more likely to switch lanes when their vehicle started in the right lane compared to the left lane. This second finding likely reflects the participants’ familiarity with merging into traffic from the right lane and is influenced too by the standard merge sign currently in use.

Overall, there were no significant changes in driver behavior upstream of the merge intersection.  Still, a graphic alternative merge sign could have promise for encouraging more even, zipper merging, once drivers become more familiar with them. Additional study, potentially including field experiments, is needed to evaluate further the potential of alternative merge signs to improve traffic flow and safety and reduce traffic congestion at merge locations.

For additional information on this simulator study, you can contact graduate student Francis Tainter at ftainter@umass.edu. The simulator study has been accepted for publication in the Transportation Research Record. 

Curbside in Boston: Increasing Available Parking with Innovative Pricing

by Tracy Zafian, Research Fellow

boston-parking-meters (1)
Boston Parking

We’ve all had the experience of having to drive around a city looking for on-street parking near our destination. Having limited availability of parking can lead to increased traffic congestion and vehicle emissions and decreased safety while drivers are distracted and looking away from the road to find parking. The City of Boston, as well as the Commonwealth (including MassDOT), have all been looking for ways to reduce vehicle emissions and improve driver safety. Variable parking meter pricing by municipalities may help.

The City of Boston recently completed a year-long pilot study testing higher parking meter pricing in the Back Bay and Seaport neighborhoods. The final report of the study is available online here. A main goal of the study was to increase the availability of on-street parking with 1-2 on-street parking spaces per city block being open at all times, equivalent to a parking occupancy rate of 60-80%. The City also sought to increase road safety by reducing distracted driving caused by drivers looking for parking and to reduce traffic congestion by decreasing illegal parking and the time to find parking.

For the study, the City raised the metered parking prices in the Back Bay area and kept the higher price for the whole pilot year. With the increased pricing, the study achieved its stated goals. With the higher meter charges, there were more open on-street parking spaces for residents and business customers.  There was also a reduction in illegal parking, in illegal parking in loading zones, in double parking, and an overall decrease in traffic congestion.

In the Seaport area, the City used a more dynamic pricing model, varying the meter prices from block to block and adjusting them every two months to try to maintain 60-80% on-street parking occupancy.  During the study, the dynamic pricing generally did not lead to more parking availability. The on-street parking occupancy in many of the zones increased from January to October 2017, even though the meter prices were raised repeatedly. Parking occupancy fell during the final two months of 2017, though it’s not clear if that was due to the higher prices. Other factors could be an ongoing construction project that impacted parking availability, and seasonal demand fluctuations in the Seaport area. Overall, during the study, the number of parking meter transactions decreased. It is possible that many drivers going to the Seaport area were not aware of the differing and changing prices for different streets. As in the Back Bay, the amount of illegal parking fell significantly during the study.

During the study, public outreach sessions were held in the Back Bay and the Seaport neighborhoods. Both positive and negative feedback was received, with the negative feedback focused on the parking rate increases in these neighborhoods when other neighborhoods kept their old parking prices. Despite the latter feedback, the City considers the pilot program to be a success overall. When announcing the study results, Boston Transportation Department Commissioner Gina N. Findaca shared the City’s findings that the parking pilot program was “an effective tool to reduce congestion, improve safety, and open up more parking in our busiest neighborhoods” and “this program makes better use of our limited curb space and helps our business districts and neighborhoods thrive by making sure drivers can easily find a spot and that pedestrians and cyclists are not adversely impacted by double parking.”

Parking meter revenues rose by $5.7 million in the Back Bay and by $300,000 in the Seaport area during the pilot year. These funds will be used for a variety of projects to improve transportation mobility including for sidewalks, bus lanes, buses, and bridges.

There are other cities, including San Francisco, New York, and Los Angeles, that have introduced dynamic meter prices in popular neighborhoods and during times of peak demand to help address parking shortages and encourage other transportation modes.

Boston’s leadership is now considering possibly continuing the differential pricing in its current locations and perhaps extending it to additional parts of the city.

 

MassDOT Research on Commuter Bus Demand, Incentives for Modal Shift and Impact on GHG Emissions

by Matt Mann, Research Program Coordinator

ghg

In January 2018, two UMass Transportation Center Research Affiliates, Assistant Professors Eleni Christofa and Eric Gonzales, presented the results of the MassDOT research project Commuter Bus Demand, Incentives for Modal Shift and Impact on GHG Emissions at an Executive Briefing at the MassDOT Office of Transportation Planning (OTP). The meeting was attended by OTP and Rail & Transit Division staff with a variety of transportation expertise. This research aimed to identify corridors in the Boston metropolitan region for which new or expanded express commuter bus service could have the largest impact on reducing greenhouse gas (GHG) emissions.

The research objectives of this project centered on:

  • Developing a data-based model to quantify the effect of new commuter bus service on user cost, agency cost, and GHG emissions, by accounting for changing mode shares.
  • Applying models to optimize potential commuter bus services and identify corridors with the greatest potential for GHG reduction.

Preliminary findings discussed at the Executive Briefing include:

  • Existing models and data centered on cost models, GHG emissions models and mode choice models.
  • Status quo mode share and GHG emissions for commuting corridors.
  • Developing a model for new commuter bus service, including user and agency costs for new services.
  • Developing a method to optimize expanded bus service
  • Prioritizing origin-destination pairs with the greatest reduction in GHG and the maximum cost efficiency.

The final report will be available in the spring of 2018.

 

 

Zipper UP – Merge Design Helps Reduce Crashes

by: Tracy Zafian, Research Fellow

zipper
Texas DOT blog

A recent study from the University of Massachusetts (UMass) Amherst evaluated the impact of various merge signs and road geometries on driver perception and behavior at merges.  Alyssa Ryan, a UMass Amherst Transportation Engineering graduate student working with Dr. Michael Knodler presented findings of the “Alternative Merge Design Downstream of Intersections,” focused on alternative merges, also known as zipper merges.  The study was discussed at the Road Safety and Simulation Conference in the Netherlands in October; additional results were presented at the annual meeting of the Transportation Research Board in Washington, D.C. in January. Discussing the importance of this research, Dr. Knodler said, “If we are able to change driver behavior to better promote alternate merging, we have the potential to improve both roadway safety and efficiency.”

The zipper merges occur when two lanes of traffic equally merge into one, rather than a standard merge from the right lane to the left, or left to right. Ideally, for zipper merges, similar levels of traffic occupy the left and right lanes approaching the merge, and then the vehicles merge into the single lane alternating from the left lane and then the right lane, vehicle by vehicle, as in the two sides of a zipper coming together. A demonstration video of a zipper merge by the Alberta Motor Association can be seen here. The UMass Amherst researchers hypothesized that “by changing signage from the traditional “Lanes End Sign” to experimental signs that promote alternative merging, drivers will be more likely to merge evenly downstream” of the lane drop location…. Even merging will present a greater balance in lane utilization, which will lead to reduced congestion and potentially improved safety.”

Traffic merges can create challenging situations for drivers and safety. The Highway Safety and Information System (HSIS), a multi-state database of a crash, traffic volume, and roadway inventory data, includes information on the driving maneuvers that result in the most truck and car crashes. In an examination of HSIS crash data for twenty-six driving maneuvers, improper merges were listed as the second most dangerous, behind inattentive driving.

The current standard traffic sign used to let drivers know that they are approaching a merge is the W4-2 sign, also known as the “Lane Ends” sign, defined in the Manual on Uniform Traffic Control Devices (MUTCD). This is the first sign on the left in the chart below. With this sign, there is no indication of how the vehicles should merge into one lane, and it also appears that the right-lane traffic will yield to traffic on the left, which is a different merging approach that is used with the zipper merge.

The UMass study had two main components. The first involved a survey of drivers regarding different potential merge signs. Drivers were shown pictures of different signs and different road-perspective views of merging road lanes. The survey asked them questions such as “In the lane drop pictured, a merge is required. With the given sign below, which lane do you prefer to approach the lane drop in?” Drivers were also shown road pictures and asked: “Knowing that you will be merging ahead, as shown, which sign would you prefer to promote EVEN MERGING?”  The different signs shown to the survey participants are in the figure here. Aside from the W4-2 sign, each of the other signs has been used in signage studies before, either at the Federal Highway Administration (FHWA)’s Human Factors Laboratory or for a study conducted in Connecticut.

zippergraph
Participant Sign Preference to Encourage Even Merging

 

The study found that with the traditional “Lanes Ends” sign, or with no sign before the merge, most survey participants indicated that they would prefer to stay in the left lane approaching the merge. With the other no-text sign options, between 30-40% of participants indicated that they had no preference between the left and right lane approaching the merge. With each of the text sign options, participants showed a preference for staying in the left lane approaching the merge though the percentages selecting the left lane or indicating no preference was almost equal for the “Alternative Merge” sign.

On the question of which sign(s) participants thought would best promote even merging, the “Lane Ends” sign was the least preferred. The “Alternative Merge” sign was the most preferred of the 8 sign options, for promoting even merging. At the same time, however, one in five (20%) of the survey respondents also rated it the least preferred.

The second part of the UMass study involved testing the most preferred signs for even merging on the UMass-Amherst advanced driving simulator. This allowed the research team to validate whether the stated preferences from the survey would match drivers’ lane choices in merge scenarios in a driving simulation environment. The preliminary results of the simulator study will be discussed more in April’s Innovative Outlook.

The findings of this research may be helpful on roadways with alternative merge configurations, either more permanent or in work zone areas where one lane is closed on a temporary basis.

For more information on this study, you can contact Alyssa Ryan by email at alyssaryan@umass.edu.

Accommodating Truckers Saves Lives and Money

by: Tracy Zafian, Research Fellow

trucks

Statistics have shown that truck driver fatigue is often a leading factor in truck crashes. A truck driver was killed in a multi-vehicle collision on Interstate 91 on January 20, 2018. Though the cause of this crash, which included two tractor-trailers and 4 cars, is still under-investigation, driver fatigue is being considered as one of the causes.

Attention to the need for safe parking and rest areas for commercial truck drivers has grown since the 2012 passage of Jason’s Law, federal legislation in honor of Jason Rivenburg, a truck driver who was killed while pulled over to rest at an abandoned gas station. As discussed in a Federal Highway Administration (FHWA) report, after Jason’s death, his spouse Hope Rivenburg sponsored a study on truck driver’s parking needs.  Among the study’s key findings:

  • 39% percent of the drivers responding take 1 hour or longer to find parking.
  • 53% of drivers regularly use a commercial truck stop for rest and 20% regularly use a rest area. Other options used regularly include shipper/receiver location (20%), on/off ramp (8%), abandoned lot/isolated area (10%), and behind a shopping center (11%).
  • 88% of drivers reported feeling unsafe while parked during mandatory rest or waiting for pickup or delivery of a load over the previous 12 months.

FHWA is working to address this issue. After its passage, Jason’s Law was incorporated into the MAP-21 (Moving Ahead for Progress in the 21st Century) transportation funding bill, and a thorough analysis of truck parking needs was conducted.

Safety and economic impacts of inadequate parking for Commercial Motor Vehicles (CMVs) were evaluated in a recent study conducted at Oregon State University (OSU). The study looked at crashes on U.S. Highway 97, which runs north-south across the state, over a 7-year period. The main finding was that at-fault truck crashes resulted in approximately $75 million of “crash harm.” The researchers estimated that at-fault truck crashes resulted from factors such as driver fatigue which can result from inadequate truck parking options. Researchers found a high need for more safe truck parking, both in Oregon, on Highway 97, and elsewhere.  Federal law restricts drivers from being behind the wheel for more than 11 hours at a time and requires them to park and rest for at least 10 hours before driving again.

Information on the OSU study was based on this Science Daily news report.

 

Uber, Lyft…Impacting Traffic and Economic Development

by Matt Mann, Research Program Coordinator

 

uber

People are taking Uber, Lyft or Transportation Network Companies (TNCs) more these days and often to avoid both parking and drinking and driving.  Although the majority of users are urban base, demand has been increasing in suburbia for Ubering.  TNCs have changed the way people get around and have impacted traffic in many cities.  If these types of rides are a pre-cursor to autonomous vehicles, the additional passenger trips will continue to increase and will also impact economic development.

A recent U.C. Davis study that included 4,000 users in seven major metro areas—Boston, Chicago, Los Angeles, New York, the San Francisco Bay Area, Seattle, and Washington, D.C., between 2014 and 2016 – points to cities increasing in passenger trips and in population, but transit rides and taxi trips decreasing.  The TNCs are the main source that are accommodating the increase in trips and in-turn causing more urban traffic congestion.

This study also found that around 50% of these trips would not have happened at all or would have been done some other way, via transit, walking etc…This coupled with the dead head time, when no passengers are in the vehicle, the TNCs are having a dramatic impact on vehicle miles traveled and congestion.

Currently New York City is the only major metropolitan city that mandates TNCs to report their travel data.  Other cities are able to obtain data but TNCs are not required to share it.  Being able to access and analyze this data can be the key to determining current and future traffic impacts.

Massachusetts passed legislation in 2016, creating a regulatory framework for TNCs. Speaking with Katie Gronendyke, Press Secretary, Executive Office of Energy and Environmental Affairs, the MA Department of Public Utilities Transportation Network Companies Division  does require some TNC travel data to be reported:

274.12: Reporting Requirements

(2) Annually, a TNC shall report to the Division the following: (a) By February 1st of each calendar year, a TNC shall submit a report for the number of Rides from the previous calendar year, including: 1. City or town where each Ride originated; 2. City or town where each Ride ended; 3. Aggregated and anonymized trip route and length (miles and minutes); and 4. Location of Vehicle accidents;

(b) By March 31st of each calendar year, a TNC shall report its intrastate operating revenues for the previous calendar year. If a TNC fails to report its intrastate operating revenues to the Division by March 31st of any calendar year, the Division may estimate a TNC’s intrastate operating revenues. A TNC’s intrastate operating revenue shall include but not be limited to any Rider picked up at the following: 1. Airport; 2. Train station; 3. Bus terminal; or 4. Any other kind of port.

Drunk Driving…Continues to be a Major Concern

by Tracy Zafian, Research Fellow

dui
from: White & Associates Law, MN

A bold new report leads with that statement and recommends a multi-faceted, comprehensive approach to eliminating drunk-driving related deaths. The report comes from the Committee on Accelerating Progress to Reduce Alcohol-Impaired Driving Fatalities, a committee convened by the National Academy of Sciences, Engineering, and Medicine to address this topic. The committee supports the concept of Vision Zero, stating in their report that “no alcohol-impaired driving deaths are acceptable, and that every stakeholder has a role in preventing these deaths.”

“Alcohol-impaired driving remains the deadliest and costliest danger on U.S. roads today.  Every day in the U.S., 29 people die in an alcohol-impaired driving crash – one death every 49 minutes – making it a persistent public health and safety problem.”

The report documents how, beginning in the 1980s, steps were taken to reduce drunk driving and to educate the public about its dangers. Such steps included new laws making it illegal to drive with a blood alcohol concentration (BAC) level above a certain level. These approaches lead to a decrease in drunk driving-related fatalities for two decades, but now the decline in these fatalities has plateaued. It is clear that a new approach is needed for progress to continue.

The committee created a conceptual framework to show the sequence of behaviors that can lead to an alcohol-impaired driving fatality, potential interventions for this behavior, and important factors that impact outcomes. The interventions would interact with each other at multiple levels, including “individual, interpersonal, institutional, community, and societal.”

The interventions fall into four primary categories:

  • Interventions to reduce drinking to impairment, such as limiting alcohol availability and marketing, especially for under-age drinkers
  • Interventions to reduce driving while impaired, including: creating viable, affordable, safe transportation alternatives for drinkers who may drive; strongly enforcing drunk driving laws; and promoting the use in-vehicle technologies that can restrict drivers with over a threshold BAC level from being able to start their vehicle.
  • Post-arrest and post-crash interventions, such as health care programs for preventing, evaluating, and treating alcohol dependency; and increased support both for first-time driving under the influence (DUI) offenders as well as habitual offenders to modify these behaviors.
  • Data and surveillance systems, including: expanding and standardizing data collection on alcohol-impaired related crashes, arrests, and convictions, long-term outcomes, and why people drive while impaired; and integrating the collected data sets for research, evaluation, and data-sharing purposes.

 Massachusetts has a history of addressing the issue of alcohol-impaired driving using education and enforcement with the coordination of multiple agencies. Each year for example, the state Executive Office of Public Safety and Security leads the Drive Sober or Get Pulled Over enforcement and education effort over the December-New Year holiday season.  This effort includes high visibility police patrols and impaired driving enforcement at high crash locations across the state. One result of Massachusetts’ efforts is that the rate of alcohol-impaired traffic deaths in Massachusetts is consistently among the lowest in the nation. Moreover, the rate of alcohol-related driving deaths in Massachusetts has fallen approximately 20 percent since 2007. However, as with the national trends, the decrease in these deaths in Massachusetts has slowed in recent years, and between 2015 and 2016, there was actually a small increase from 109 to 119 people killed statewide in alcohol-related crashes.

Portland Maine – Thinking Ahead for Autonomous Shuttles

by Melissa Paciulli, Manager of Research

 

shuttle

 

The Town Planner and Legislators are working together to be prepared for a potential autonomous shuttle that connects the Portland Transportation Center with the waterfront and downtown area to assist tourists. New legislation was drafted by Representative Heather Sanborn, which would allow cities and towns to start pilot programs in partnerships with state agencies with autonomous vehicles, as reported in the Portland Press.

The proposed legislation could set up Maine to be a leader in pilot programing for autonomous transit.  Companies such as the global data company Inrix, have been in touch with Town officials about collecting data on the city streets, necessary for autonomous navigation. There are no current companies lobbying for the first pilot in the area, however the legislation, which is slated for a January 2018 review, is a first step in the process of making this a reality.