Autonomous Vehicle Research: MassDOT Leads the Way

More U.S. states are considering legislation and regulations for highly automated vehicles (HAVs) testing. Twenty-four states and the District of Columbia have now enacted legislation regarding the testing of highly autonomous vehicles. Only Michigan currently allows the driverless HAVs on public roads; California is considering the same but has not approved it yet.

The federal policy (Federal Automated Vehicles Policy) provides guidance for those developing, testing, and deploying highly automated vehicles. The policy considers current and potential regulatory tools that could be used with these vehicles. The policy also describes the different responsibilities on the federal and state levels, and creates a model for state policy that recommends policy areas for states to consider for automated vehicles.

Figure 1: States with Enacted Legislation for Autonomous Vehicles

IOpicAs of July 27, 2017. Source: National Conference of State Legislatures. http://www.ncsl.org/research/transportation/autonomous-vehicles-self-driving-vehicles-enacted-legislation.aspx

In October 2016, Massachusetts Gov. Charlie Baker signed Executive Order No. 572, To Promote the Testing and Deployment of Highly Automated Driving Technologies (EO 572). EO 572 created a state government working group on autonomous vehicles (AV Working Group). The group’s charge is to “convene and consult with experts on motor vehicle safety and vehicle automation…and [to] work with the Legislature on any proposed legislation necessary to protect the public welfare.” The AV Working Group is led by Katherine Fichter, Massachusetts Department of Transportation (MassDOT) Assistant Secretary for Policy Coordination and Transportation Secretary Stephanie Pollack’s designee to the group. The AV Working Group also includes other MassDOT staff and representatives from the State Police, the Executive Office of Public Safety and Security, Housing and Economic Development, and the State Legislature.

One Center, at the UMass Transportation Center, has recently contracted with UMTC Research Affiliates, at UMass Lowell, to conduct research on the technological developments, regulatory requirements, funding opportunities, and potential benefits of the emerging AV technology to take appropriate actions for the benefit of the citizens of the Commonwealth. The affiliates associated with this research are Chronis Stamatiadis, Nathan Gartner, Yuanchang Xie, and Danjue Chen. This project will provide baseline information pertaining to strategic planning for connected vehicle (CV) technologies. This information will be used by MassDOT to develop a strategic plan for the development and deployment of connected vehicle technology and infrastructure in Massachusetts.

EO 572 authorized MassDOT, with input from the AV Working Group and other technical experts, to develop and issue guidance for testing highly automated vehicles on public roadways in Massachusetts, and includes a process for companies to obtain approval for such testing.

Highly automated vehicle testing on public roadways is under the authority of MassDOT. Presently in Massachusetts, most testing takes place in spaces and courses outside of MassDOT’s jurisdiction, such as universities, private indoor testing facilities, and the former Fort Devens military base.

As described by Boston National Public Radio station WBUR, nuTonomy, a Massachusetts Institute of Technology (MIT) spinoff company, began the first testing of highly automated cars on Boston roads in January 2017. The initial testing area was limited to a 191-acre industrial park in South Boston, the Raymond L. Flynn Marine Park, which has a simple road layout, no traffic signals, and only 3 miles of roadway. At first, testing was approved only for daylight hours and good weather, but then was expanded to nighttime and inclement weather. The company has now logged over 200 miles of automated vehicle driving in the industrial park, with no crashes or incidences. With these results, in April 2017, nuTonomy was granted approval to expand its HAV testing to the Seaport and Fort Point areas. A Boston Globe article discussed this approval and interviewed City of Boston and nuTonomy staff. The Seaport roadways are considerably more complex than the testing roads so far, including more complicated intersections, traffic signals, roadways with multiple lanes, bridges, and a rotary. As before, nuTonomy’s testing in the expanded area initially was for daylight hours and good weather only.

In June 2017, MassDOT granted permission for a second MIT-spinoff company, Optimus Ride, to test highly automated vehicles on Boston roads. As described in a Boston Globe article, Optimus Ride will initially test its vehicles only in the Raymond L. Flynn Marine Park, as nuTonomy did.

During their HAV roadway testing, nuTonomy and Optimus Ride both have a human operator sitting in the driver’s seat, ready to take over control of the vehicle if needed. This is currently standard for most on-road testing of HAVs. Some companies use two human workers, one in the driver seat and one in the front passenger seat, to help sustain vigilance and monitoring of the HAV’s driving and the ability to switch to manual driving mode if ever needed. As described in its road test application to MassDOT, after 200 miles of testing, Optimus Ride may request MassDOT permission to test its vehicles with passengers.

In terms of legislation and regulations for automated vehicles (AVs), in her keynote talk at a recent conference on Autonomous and Connected Vehicles held at Worcester Polytechnic Institute, Ms. Fichter indicated that Gov. Baker and MassDOT have taken the position that it is better not to regulate AVs through legislation. AV and HAV technologies are still evolving, and legislation can be difficult to modify once passed. In the Massachusetts Legislature, there are currently eight bills that have been filed related to AVs. On July 13, 2017, the AV Working Group held a legislative meeting to discuss them and hear more about them from their proponents. The MassRobotics Consortium has posted its notes from the meeting. Most of the bills include guidance for AV safety and for liability in the event of a crash involving an AV, with no liability assigned to the original manufacturer of a vehicle that has been later converted to an AV. Joint bills S. 1945/H. 1829 also request that all AVs be zero emission vehicles (ZEVs), encourage AVs to be for public transit only in areas with dense populations, provide guidance for AV data collection, and propose having a vehicle-miles-traveled (VMT) tax on AVs. The idea of a VMT-based tax raised questions and issues at the meeting, related to such issues as geographic equity, fuel consumption and encouraging efficient vehicles, and collection of vehicle owners’ travel data, as well as the need for additional revenues as more vehicles are converted to AVs and electric vehicles.

Among the other proposed AV legislation, H. 2742 requires that AVs used for the interstate transport of goods or for transporting eight or more people be required to have a human operator present who can intervene if needed. Bills S. 1938 and H. 3422 both focus on making AVs that do not require a human operator available to the public. Bills H. 1822 and H. 1897 each request that MassDOT submit a report to the state House and Senate leaders “recommending additional legislative or regulatory action that may be required for the safe testing and operation of motor vehicles equipped with autonomous technology.” H. 1897 requests such a report by June 2017, while H. 1822 requests it by March 2019.

At the end of the July AV Working Group meeting, Ms. Fichter recommended the next meeting would be in September 2017. At this meeting, people from the AV industry will present and provide their perspectives regarding AVs and HAV regulation, and how AV technologies will come to market.

 

 

 

Written by: Tracy Zafian, UMTC Research Fellow

 

————-

Advertisements

YouTube Research Spotlight: Research to Improve At-Grade Rail Crossing Safety

The UMTC Research Section Launches a Research Spotlight YouTube Channel. We are showcasing research currently being conducted on “At-Grade Rail Crossing Safety” by Radhameris Gomez.  Ms. Gomez is a PhD candidate in the UMass Transportation Engineering Program at the University of Massachusetts, Amherst. View the overview video (3 minutes) or the extended video (10 minutes) to find out how she became interested in studying transportation engineering.

TrailCrashes at roadway-railroad intersections happen far too often. Federal Railroad Administration data show that 2,025 such crashes occurred in the United States in 2016, resulting in 265 fatalities and 798 injuries. There have been a number of roadway-rail intersection crashes recently. For example, in Florida, an Amtrak train collision with a car left one person dead; in Arkansas, one person was killed and another injured when their car crossed into a train’s path; and in North Carolina, a train crashed into a car that stopped on the railroad tracks when the safety arms came down, and the car driver was killed. Earlier in March, a freight train collided with a charter bus in Mississippi that had become stuck on a rail crossing with low clearance on the crest of a slope. Four people were killed and others injured; it was the 161st crash since 1976 at that crossing. After a March snowstorm, a local DPW worker in Longmeadow, Massachusetts, died when his snowplow backed onto railroad tracks when a train was coming. At that intersection, there are no gate arms or traffic signals to help warn drivers when a train would be coming; there had been five other crashes and four other deaths at that location since the 1970s.

Previous studies have examined primary contributing factors for grade-crossing train-car crashes and how these crashes can be prevented. Jeff Caird and colleagues at the University of Calgary analyzed over 300 grade-crossing crashes in Canada (2002). They estimated that adding flashing lights to a rail crossing without them has the potential to reduce crashes by over 60 percent, as compared to crossbucks alone. Michael Lenné and colleagues at Monash University in Australia conducted a driving simulator study (2010) on driving behavior at three different types of at-grade rail crossings: stop-controlled, with flashing lights, and with a traffic signal. The researchers found that participants slowed their vehicles the most when approaching rail crossings with flashing lights.

By: Tracy Zafian, UMTC Research Fellow

Save

DC Metro : Getting Back on Track

One year ago, in March 2016, the entire Washington, DC, subway system was closed for 29 hours for emergency inspections. This shutdown came after a number of electrical fires oin the subway system, involving fraying third-rail electrical cables. In January 2015, a Washington Metro train encountered heavy smoke near the L’Enfant station due to a third-rail electrical issue and was forced to cease service. One passenger died from smoke inhalation and others were injured. On March 14, 2016, an electrical fire, caused by the same electrical issues as the Nee L’Enfant station incident, occurred near another station. There were fortunately no fatalities. Still, the Metro management shut down subway service a few days later to allow for a system-wide inspection of all third-rail power cables to proactively address system safety before further incidents.

Run by the Washington Metropolitan Area Transit Authority (WMATA), Metro is the second-highest use rapid transit system in the United States, behind just  the New York City subway system, in terms of passenger trips, serving over 700,000 riders per weekday.  Metro is just over 40 years old and faces the many of the same challenges as older US transit systems, including inadequate funding and maintenance backlogs.

In May 2016, WMATA introduced SafeTrack, a comprehensive accelerated maintenance and repair program for implementing safety recommendations and needed upgrades to rail infrastructure.  SafeTrack involves the use of “surges,” intensive work on specific sections of the rail network and the shutting down of one or both tracks in those sections during this work, together with the reduction of Metro operating hours at night and on weekends to make more tracks available for maintenance.

Last week, the US Government Accountability Office (GAO) released a report on its audit of the SafeTrack program.  GAO found that WMATA did not following leading management practices and “(1) comprehensively collect and assess data on its assets, (2) analyze alternatives, or (3) develop a project management plan”  prior to implementing SafeTrack.  In response to the GAO findings, Metro General Manager and CEO Paul Weidefeld stated that WMATA didn’t have time for comprehensive data collection before starting SafeTrack, because safety issues and delayed maintenance had reached a critical point and needed to be addressed as soon as possible. GAO recommends that WMATA develop a full asset inventory and a project management plan for those needed projects that may not qualify as major capital projects.  WMATA is now working to address GAO’s recommendations.

The GAO report found that SafeTrack “will require an additional $40 million in fiscal year 2017 funding.” It is not yet clear where that funding will come from.  Although many transit systems are challenged by inadequate funding, Metro is specifically impacted by one funding issue not faced by other large US transit systems:  Metro has no dedicated funding or revenue sources for its operating budget. WMATA relies heavily on year-to-year subsidies from the governments of Virginia, Maryland, and the District of Columbia, which each have budget constraints and funding priorities of their own. In 2016, 47% of Metro’s budget came from local and state subsidies and 45% from fare revenue. In contrast, for the MBTA, 62% of the budget comes from dedicated revenue (such as the sales tax) and 33% from fares.  In New York, the MTA’s budget relies 36% on dedicated funding, 52% on fare revenue, and 8% on local and state subsidies.  WMATA currently has an almost $300 million annual budget gap.

DCMETRO

The Federal Transit Authority (FTA) provided some funding for SafeTrack repairs and maintenance. Increasingly, business leaders, DC officials, and others are calling for a dedicated source of funding or regional sales tax surcharge to support Metro operations. So far, these requests have faced opposition from Virginia and Maryland officials.  Proponents argue that dedicated funding is not only important for Metro system safety, but could relieve traffic congestion and spur economic development as well.

Also, last week, board members of Metrolink, the regional rail system in Los Angeles, met with the Metro Board Safety Committee to share Metrolink’s firsthand experience with the importance of making safety a priority.  The Metrolink officials showed a poignant video that Metrolink made following the most deadly crash in Metrolink history, a 2008 crash in which 25 people were killed when a commuter train collided with a freight train.  The video focuses on commitment and responsibilities of the Metrolink board regarding safety.  At the meeting,  Metro board member Michael Goldman suggested Metro could create its own video on the safety in the Metro system for its board members and the public.

By: Tracy Zafian, UMTC Research Fellow

Save

2016 Commercial Vehicle Safety Research Summit

The University of Massachusetts Traffic Safety Research Program (UMassSafe) held a Commercial Vehicle Safety Research Summit in November of 2016 to promote best practices for advancing safety through partnerships among law enforcement and state driver’s license agencies with universities.  With more than 100 attendees from across the Northeast, the 2-day Summit, funded by the Federal Motor Carrier Safety Administration (FMCSA), addressed key issues related to crash prevention including driver distraction and autonomous vehicles, as well as homeland security, drugged driving, social media and workforce development.

safety-summit-pic

“Innovation is rapidly changing the transportation sector.  The Federal and state governments must keep up while never losing sight of protecting the traveling public,” said FMCSA Deputy Administrator Daphne Jefferson, one of the keynote speakers. “This summit enables us to learn from each other and build partnerships with universities to realize the safety benefits of innovation and automation.”

The goals of the summit were based upon the premise that an integrated approach and effective partnerships can reduce the number of truck and bus crashes and fatalities.  Massachusetts has enjoyed positive safety results because of the successful partnership that now exists between UMassSafe, the Massachusetts State Police Commercial Vehicle Enforcement Section and MassDOT’s Registry of Motor Vehicles Division. Using this experience as an example, summit organizers encouraged other state participants to develop or expand the connection between universities and state agencies involved in crash prevention efforts.

The FMCSA funded project continues with the implementation of a UMassSafe Technical Assistance Center (TAC) in order to provide assistance for law enforcement and licensing agencies as well as universities, acting as a resource and information center building on the momentum of the Summit.  Additional information can be accessed at www.umasstransportationcenter.org/cvsummit.

By: Robin Riessman, UMassSafe