Safety First! Are You a Distracted Driver or a Distracted Pedestrian?

The annual number of pedestrians hit and killed by vehicles in the United States is now at its highest level in more than 20 years. In March 2017, the Governors Highway Safety Association (GHSA) released a report showing an 11 percent increase rise in the number of pedestrian deaths between 2015 and 2016, and a 25 percent increase in these deaths over the past five years. The report estimates here were almost 6,000 pedestrian fatalities in 2016 and pedestrias now account for 15 percent of all traffic deaths. The rise in pedestrian fatalities from 2015 to 2016 was the highest annual increase in both the total number and percentage growth in the 40 years that these national data have been recorded.

The GHSA figurpedses are calculated based on pedestrian fatalities for January to June 2016 and then extrapolated for the rest of the year. For this six-month period, 2,660 pedestrians died in traffic crashes nationwide. Four states accounted for 43 percent of these fatalities: California (405 pedestrian deaths); Florida (277); Texas (242); and NewYork (137). Massachusetts had 38 pedestrian deaths in this time frame( 1.4 percent of the total).

Source: Seattle Times

The GHSA identified several factors that could be contributing to the rise in pedestrian deaths, including the following.

  • More driving. People are driving more now, with the economy improving and gas prices down from their historic high levels ($4+/gallon) earlier this decade. Federal Highway Administration data released in February 2017 show that in 2016, people in cars, minivans, SUVs, and trucks drove a record 3.22 trillion miles on the nation’s roads and highways. This is an increase of 3 percent over 2015, and the fifth straight year of increased total mileage.
  • Alcohol. According to the GHSA report, 15 percent of pedestrian taffic deaths involve a drunk driver, and 34 percent of the pedestrians killed in traffic accidents themselves have blood alcohol levels above the legal limit of 0.08.
  • Lack of pedestrian visibility. Many of the pedestrian fatalities occurred in conditions where the pedestrians may not be very visible to drivers. The GHSA found that 74 percent of pedestrian deaths occurred at night, and 72 percent of those killed were not at a roadway intersection.
  • In recent years, as cell phones and other portable communication and entertainment devices have become more ubiquitous, there has been an increase in crashes and injuries attributed to distraction. Drive distraction is considered one of the top three causes of traffic fatalities in general—the other top causes are alcohol and vehicle speed—and one of three main causes for pedestrian fatalities. The National Highway Transportation Safety Administration (NHTSA) found that driver distraction contributed to 3,477 traffic crash-related deaths and 391,000 injuries in 2015. As discussed in a recent National Public Radio piece, there are also concerns about the impact of pedestrians’ own distractions on pedestrian safety

A comprehensive research literature review on the impact of electronic device use on pedestrian safety was conducted by Robert Scopatz and Yuying Zhou (2016). The literature review was part of a larger research project examining whether electronic device use by drivers and pedestrians significantly affects pedestrian safety. The literature review included sections on distracted pedestrians, distracted drivers, and pedestrian-driver interactions, and examined real-world studies, simulator studies, and other collected data in these three areas. There have been no studies thus far showing a direct cause-and-effect link between distraction and pedestrian crash risk. Nonetheless, there is clear evidence that distracted drivers face increased crash risks and that distraction impacts how pedestrians walk, react, and behave, including safety-related behaviors

Scopatz and Zhou found only one study (Brumfield and Pulugurtha, 2011) to date that examined pedestrian-vehicle conflicts and the role of distraction due to handheld electronic device use. That study’s researchers observed 325 pedestrian-vehicle interactions at seven midblock crosswalks on a university campus in Charlotte, North Carolina. They found that 29 percent of pedestrians and 18 percent of drivers were noticeably distracted (talking on a cell phone or texting) at the time the pedestrian and vehicle were nearing the crosswalk. Further, the researchers calculated that distracted drivers were more than three times more likely to be involved in a conflict at the midblock crosswalks than distracted pedestrians. Government legislators in Montreal, Quebec, and New Jersey have proposed banning cell phone texting for pedestrians while they are crossing the street. These proposals have not received much support thus far.

Research is needed to dig deeper into the issues around pedestrian fatalities with specific focus on distraction.

Some key questions remain:

  • How distractions (for drivers and pedestrians) exacerbated by hazards that are already present?
  • With the encouragement of Bicycling and Pedestrian activity for healthy communities, how will this impact the grown problem?
  • What type of solutions are States considering for solutions? One recent report published in March of 2017,  Consensus Recommendations for Pedestrian Injury Surveillance aims to offer guidance in tracking, recording and prevention.

By: Tracy Zafian, UMTC Research Fellow with input from Affiliate Researcher, Karin Goins from UMass Medical

 

YouTube Research Spotlight: Research to Improve At-Grade Rail Crossing Safety

The UMTC Research Section Launches a Research Spotlight YouTube Channel. We are showcasing research currently being conducted on “At-Grade Rail Crossing Safety” by Radhameris Gomez.  Ms. Gomez is a PhD candidate in the UMass Transportation Engineering Program at the University of Massachusetts, Amherst. View the overview video (3 minutes) or the extended video (10 minutes) to find out how she became interested in studying transportation engineering.

TrailCrashes at roadway-railroad intersections happen far too often. Federal Railroad Administration data show that 2,025 such crashes occurred in the United States in 2016, resulting in 265 fatalities and 798 injuries. There have been a number of roadway-rail intersection crashes recently. For example, in Florida, an Amtrak train collision with a car left one person dead; in Arkansas, one person was killed and another injured when their car crossed into a train’s path; and in North Carolina, a train crashed into a car that stopped on the railroad tracks when the safety arms came down, and the car driver was killed. Earlier in March, a freight train collided with a charter bus in Mississippi that had become stuck on a rail crossing with low clearance on the crest of a slope. Four people were killed and others injured; it was the 161st crash since 1976 at that crossing. After a March snowstorm, a local DPW worker in Longmeadow, Massachusetts, died when his snowplow backed onto railroad tracks when a train was coming. At that intersection, there are no gate arms or traffic signals to help warn drivers when a train would be coming; there had been five other crashes and four other deaths at that location since the 1970s.

Previous studies have examined primary contributing factors for grade-crossing train-car crashes and how these crashes can be prevented. Jeff Caird and colleagues at the University of Calgary analyzed over 300 grade-crossing crashes in Canada (2002). They estimated that adding flashing lights to a rail crossing without them has the potential to reduce crashes by over 60 percent, as compared to crossbucks alone. Michael Lenné and colleagues at Monash University in Australia conducted a driving simulator study (2010) on driving behavior at three different types of at-grade rail crossings: stop-controlled, with flashing lights, and with a traffic signal. The researchers found that participants slowed their vehicles the most when approaching rail crossings with flashing lights.

By: Tracy Zafian, UMTC Research Fellow

Save

Simulator Evaluation of the Effectiveness of an Comprehensive Teen Driver Training Program

Novice teen drivers are over represented in crashes, particularly rear end, intersection and run- off-the-road crashes. Their over involvement in these crashes appears to be due to six poorly developed skills: tactical and strategic hazard anticipation, tactical and strategic hazard mitigation, and tactical and strategic attention maintenance. Previous studies had determined that a single skill could be taught in a 45 minute training session. The question addressed here was whether all six possible skills could be taught in a two hour session without reducing the effectiveness of the training of the individual skills. Specifically, the current study examines the development and evaluation on a driving simulator of a training program, ACCEL (Accelerated Curriculum to Create Effective Learning), that is designed to decrease the time it takes teens to become safer drivers over the first 18 months of independent driving by targeting for training the above six behaviors in the most risky crash scenarios. During the evaluation, eye movements were recorded and vehicle measures were collected for a total of 75 novice drivers (16 to 18 14 years with less than 6 months’ experience), of which fifty were ACCEL-trained and 25 were Placebo-trained, and 25 experienced drivers (28 to 55 with at least 10 years’ experience), all untrained. ACCEL training was found to significantly improve the performance of novice drivers in 5 out of the 6 of the trained skills when compared to Placebo trained teens: tactical and strategic hazard anticipation, tactical hazard mitigation, and tactical and strategic attention maintenance. The results are consistent with the hypothesis that combined skill training can be deliver effectively in a relatively short amount of time.

Innovative Strategies for Safer Cycling

Research in progress at the University of Massachusetts underway to evaluate newer bicycle infrastructure treatments such as bike-boxes, merge lanes, and protected intersections to identify patterns around driver behavior and performance when approaching these new innovative bicycle infrastructure treatments. The information collected can then be used to develop countermeasures such as infrastructure geometry, signage, training campaigns, etc. The goal of this information is to promote cycling by mitigating bicycle safety concerns through improving driver awareness at new and unfamiliar bicycle infrastructure treatments. For more information please click here.

By: Eleni Christofa and Nick Fournier