Morning Joe to Help Buses Go

by Tracy Zafian, Research Fellow

coffeebus

Startup company bio-bean is collecting used coffee grounds from cafes, restaurants, and factories and turning them into a biofuel for powering London’s buses. Bio-bean is partnering with Shell and Argent Energy, the United Kingdom’s largest biodiesel producer, on this project. So far, more than 1,600 gallons of coffee fuel have been produced, enough to help power one city bus for a year.

The collected coffee grounds are dried and then the natural oils in the coffee (also known as caffeol) are extracted and blended with other fuels to create B20 biofuel, containing 20% biodiesel and 80% petroleum diesel. This fuel can be used in standard diesel engines. According to the bio-bean web site, “Spent coffee grounds are highly calorific and contain valuable compounds, making them an ideal feedback from which to produce clean fuels.”

 

The coffee fuel initiative in London, the first in the world, is a demonstration project. Bio-bean is interested in expanding to other markets. One market with great promise: the U.S., where over 400 million cups of coffee are consumed each day.

Article source:  CNN (http://money.cnn.com/2017/11/20/technology/coffee-fuel-bus-london-bio-bean/index.html). This link also contains a brief video interview with bio-bean founder, Arthur Kay.

 

Advertisements

Transportation Sector – Moving from GHGs to Electricity

by: Matt Mann, Research Program Coordinator

Gas vs Hybrid

As Greenhouse Gases (GHGs) continue to contribute to climate change, the biggest contributor is now the transportation sector, taking over from the power plants.  This doesn’t mean there are more emissions coming out of tailpipes; rather less coal is being used and an increase in cleaner natural gas are two of the biggest reasons.  In the long-term, the other reason could also include an increase in demand of electric vehicles.

Transportation emissions have been fairly flat since 2000 and with a slight increase since 2012.  This, coupled with an increase in the way electricity emissions are produced, has allowed planes, trains and automobiles to become the lead emitter of GHGs since the late 1970s.  Electricity demand has also leveled off, as the shift has been away from coal and more on natural gas and renewable energy.

Even though electricity demand has leveled off, the increase demand for electric vehicles could change this.  With a minimal but consistent increase over the last couple of years, electric vehicles are expected to widen their reach and even include electric delivery trucks as well. With electric vehicles becoming more affordable, reliant and convenient, this increase in demand could eventually have a big impact on pollution emitted.

There are a couple recently completed MassDOT research publications on GHGs reduction and electric vehicles, written by One Center Research Affiliates Erin Baker and Song Gao.  Also Shannon Greenwell, from the Office of Transportation Planning at MassDOT, is currently working on a review and analysis of low-cost, quick to deploy, and scalable GHG-reducing investment strategies that would supplement traditional capital investments.

US: Transit Agencies Cautious on Electric Buses Despite Bold Forecasts – Dr. Christofa and Dr. Pollitt Weigh in

by: Melissa Paciulli, UMTC Manager of Research

electric buses
Chicago Tribune, 2017

One Center Affiliates, Dr. Eleni Christofa and Dr. Krystal Pollitt recently completed research for MassDOT on evaluating electric and other zero emission buses in the U.S. As part of this research, they completed an extensive review of transit agencies’ experience with electric buses across the country.  We asked them to weigh in on a recent article published by Nicholas Groom, from Reuters, December 12, 2017 on MassTransit, which reported that “more than 65,000 public buses plying U.S. roads today, just 300 are electric. Among the challenges: EVs are expensive, have limited range and are unproven on a mass scale.”

Dr Christofa and Dr. Pollitt, argue that based on their findings, “Electric buses have the potential to expand across the fleets of U.S. transit agencies; limiting factors have been driving range and costs. Recent advances in battery technology are moving towards overcoming these hurdles with increases in energy density and decreased battery costs.”

MassDOT Contracts with UMass Lowell Researchers on “Greenhouse Gas Reduction Strategy Analysis.”

by: Shannon Greenwell, MassDOT Transportation Planner and edited by: Melissa Paciulli, Manager of Research

MassDOT has chosen Affiliate Researchers, Danjue Chen, Yuanchang Xie, and Jill Hendrickson Lohmeier to start a 12-to-18-month research project based in UMass Lowell.

MassDOT’s primary lever for reducing greenhouse gas (GHG) emissions is investment in transportation projects and programs that reduce congestion and promote low emission transportation options such as transit, walking and bicycling. Primarily, this includes traditional capital projects such as constructing sidewalks and bicycle lanes, improving intersections, and procuring cleaner transit vehicles. While these investments are integral to MassDOT’s mission to provide safe and reliable transportation options, and also support Massachusetts’ efforts to achieve the Commonwealth’s emissions reduction targets set out under the Global Warming Solutions Act (GWSA),[1] they often have high capital costs and long design and construction timelines.

ghg

Through this search endeavor, MassDOT seeks a review and analysis of low-cost, quick to deploy and scaleable GHG-reducing investment strategies that would supplement traditional capital investments. This data will inform decision-making on how MassDOT could diversify its investments to further support greenhouse gas emission reduction efforts. MassDOT is specifically interested in capital subsidy and direct incentive compensation strategies.

 Shannon Greenwell is a Transportation Planner with MassDOT’s Office of Transportation Planning. As a planner within the Sustainable Transportation group, Shannon’s work focuses on the research, analysis and development of strategies that reduce transportation sector greenhouse gas emissions, ranging from capital investments in infrastructure, to wider-reaching programmatic interventions.

[1] Requires Massachusetts to reduce greenhouse gas (GHG) emissions to 80 percent below 1990 levels by 2050.

Plug-in and Ride: The Promise and Potential Challenges of Electric Buses

By Tracy Zafian, UMTC Research Fellow

The use of electric buses and other zero emission vehicles (ZEVs) holds great promise to help reduce vehicle emissions and promote a clearer, less polluting transportation sector.

Transit bus systems offer a great venue for deploying and testing the latest ZEV technologies. An estimated 40 U.S. transit systems now include electric-power buses as part of their fleet. To date, bus systems in California have been the greatest adopters of electric buses. The Santa Barbara Metropolitan Transit District began using electric buses in 2003 and currently has 14 in operation. Stanford University Transit presently has a fleet of 23 electric buses, which it launched in 2014. Foothill Transit in Northern California started using electric buses in 2010 and now has 30 in use. Foothill Transit has pledged to change all its buses over to electric power by 2030. Foothill Transit estimates that already, its annual electric buses eliminate the same amount of emissions as 2,424 gasoline-powered cars. A number of other California transit agencies have smaller fleets of electric buses.

Two UMTC Research Affiliates recently developed a comprehensive review of past and current electric bus deployments nationally. This research was led by Professor Eleni Christofa in Civil and Environmental Engineering and Professor Krystal Pollitt in Environmental Health Sciences. The review included discussions of the three main types of electric-power buses currently in use, and of different facets and impacts of transit agencies’ change to electric buses, including areas of challenge.

The primary type of electric bus in use today is the battery electric (BE) bus, and more than 20 U.S. transit agencies have incorporated BE buses into their operations, including the Worcester Regional Transit Authority (WRTA) and the Pioneer Valley Transit Authority (PVTA). BE buses contain an onboard electric battery, which provides all their power. These batteries are typically re-charged through plug-in stations; BE buses also capture and then use energy from regenerative braking. BE buses have no direct vehicle emissions, but there may be atmospheric pollutants associated with the generation of electricity used for charging their onboard batteries. One potential challenge with BE buses is the short driving range (30 to 130 miles) before needing to be recharged, and the impact of the need for recharging on route scheduling. These buses will typically be recharged at bus stop charging stations during their routes for quick charges (5 to 15 minutes). Some transit agencies also utilize slower charging stations at a central location such as a bus garage, for when BE buses are out of service. Even with the quick charges, it is important that bus schedules be adjusted to reflect the charging time.

BE buses are more expensive to purchase than traditional diesel-engine buses ($750,000 per bus compared to $435,000 per bus, respectively); however, they have a longer expected lifespan than diesel buses. BE buses also save fuel and maintenance costs. Proterra has stated that overall, the lifecycle costs of BE and diesel buses are similar. The PVTA estimates that each of its BE buses will save the agency $448,000 combined in fuel and maintenance costs. The PVTA also calculated that each of its BE buses will eliminate 244,000 pounds of carbon dioxide emissions compared to their diesel bus counterparts.

The second main type of zero-emissions buses are those powered by hydrogen fuel cell batteries. Fuel cell battery electric (FCBE) buses store hydrogen onboard in storage tanks and the hydrogen is then supplied to the fuel cells to generate electricity to power the vehicles. There are no emissions, as water is the only by-product for FCBEs. There are presently seven U.S. transit agencies operating FCBE buses; the electric bus at the Massachusetts Bay Transportation Authority (MBTA) uses FCBE technology.

With a typical purchase price of $1.2 million, an FCBE bus is much more expensive to purchase than a conventional diesel bus ($435,000) or a compressed natural gas bus ($500,000). FCBE buses also require special training for bus operators on using the technology and special hydrogen storing and fueling facilities; these are typically located at bus depots to allow vehicles to be refueled at day’s end. On the plus side, the fuel economy for FCBE buses has been reported to be double that for compressed natural gas or diesel buses.

The third main type of zero emission buses are fuel cell hybrid (FCH) plug-in buses which use a combination of both onboard batteries and hydrogen fuel cells. To date, only 7 U.S. transit agencies have used FCH buses, mainly in short-term demonstration projects. Transit agencies that have tried FCH buses have consistently reported significant downtime for the buses, due to issues with the batteries, the fuel cell systems, and the hybrid integrator, and to challenges in diagnosing specific problems.

Currently, BE buses seem to hold the most promise for wider deployment and use.

 

The Fábos Conference on Landscape and Greenway Planning

dsc09869

Are you interested in what planners from around the world are doing to design innovative bicycle and pedestrian corridors, green streets, and other creative solutions to challenging urban conditions? To explore these issues, international experts gather every three years at the Fábos Conference on Landscape and Greenway Planning to highlight recent trends and expand the research about landscape and greenway planning. The aim is to explore how landscape architects and planners from different countries have approached greenway planning and to understand how greenways have been tailored to each county’s unique geographical, cultural, and political circumstances.

The conference is organized by Department of Landscape Architecture and Regional Planning at the University of Massachusetts, Amherst with generous support from the Fábos Fund in partnership with Szent István University, Bdsc09888udapest, Hungary. Professor Emeritus Julius Gy. Fábos is an international leader in greenway planning who taught for over 35 years in the UMass Department of Landscape Architecture and Regional Planning. For more information about Dr. Fábos see http://www.umass.edu/larp/people/julius-gy-fábos.

This year’s conference, the 5th Fábos Conference on Landscape and Greenway Planning, Greenways, Corridors of Change and Resilience was held in Budapest, Hungary on June 30-July 3, 2016 and featured over 150 speakers from over thirty countries and five continents. The conference focused on the challenges of rapid social, economic, political and ecological change caused by forces such as urbanization and climate change. These conference papers range from solutions to creating urban greenways in some of the most crowded cities in the world, as well as innovative design solutions for old industrial waterfronts, to historic and cultural trails, such as the Dinosaur Trail for the Connecticut River Valley. The full papers from the conference are available in a two-volume edited proceeding at https://sites.google.com/site/fabos2016/publication.

The next Fábos conference will be held in spring, 2019 at the University of Massachusetts at Amherst. For more information, please contact conference co-organizer, Professor Robert L. Ryan at rlryan@larp.umass.edu or Tel. (413) 545-6633.

By Professor Robert Ryan, PhD, FASLA – UMass-Amherst Department of Landscape Architecture

Meet Our Affiliated Researcher: Dr. Amro Farid, Associate Professor at the Thayer School of Engineering, Dartmouth

Dr. Farid is an Associate Professor at the Thayer School of Engineering at Dartmouth and Director of the Laboratory for Intelligent Integrated Networks of Engineering Systems (LIINES). His research is devoted to enhancement of sustainability, and resilience in intelligent energy systems. His research team seeks to develop an internationally recognized, locally relevant and industrially-facing program of research that engineers intelligent & integrated control, automation, and information technology systems that support the operations and planning of large scale integrated energy systems. These activities encourage and facilitate technology policy that supports the achievement of energy, water, transportation & industrial policy objectives while eliminating barriers to sustainable and resilient automated solutions.

Within our electrified transportation systems research theme, the center has made two important achievements.

1.) Abu Dhabi Electric Vehicle Integration Study: In the first full scale study of its kind, the LIINES has studied the technical feasibility of electric vehicles with respect to three infrastructure systems: the road transportation system, the electrical grid, and the Abu Dhabi Department of Transportation’s Intelligent Transportation System. Acknowledgement: The LIINES is grateful to METI for its partial financial support of this research, Mitsubishi Heavy Industries for the use of its Clean Mobility Simulator software and the Abu Dhabi Department of Transport for providing data on its traffic patterns and intelligent transportation system.

2.) Hybrid Dynamics Modeling of the Transportation-Electricity Nexus: Building upon the previous research project and develops a hybrid dynamic system model of the full Energy-Transportation Nexus. By choosing to include the behavior of the transportation system in combination with the electrical system this model seeks to coordinate four types interdependent decisions: vehicle routing/dispatching, charging queue management, charging dispatch, and vehicle-2-grid stabilization.

Dr. Farid also maintains a research blog that highlights his latest conference proceedings, research and publications. His most recent publication is titled “A Hybrid Dynamic System Model for Multi-Modal Transportation Electrification,” published in the IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.

For more information on Dr. Farid you can click here.  We at the UMTC are pleased to welcome him to our Affiliate Researcher Network and look forward to working with him on interesting transportation research ideas in the future.