The Fábos Conference on Landscape and Greenway Planning

dsc09869

Are you interested in what planners from around the world are doing to design innovative bicycle and pedestrian corridors, green streets, and other creative solutions to challenging urban conditions? To explore these issues, international experts gather every three years at the Fábos Conference on Landscape and Greenway Planning to highlight recent trends and expand the research about landscape and greenway planning. The aim is to explore how landscape architects and planners from different countries have approached greenway planning and to understand how greenways have been tailored to each county’s unique geographical, cultural, and political circumstances.

The conference is organized by Department of Landscape Architecture and Regional Planning at the University of Massachusetts, Amherst with generous support from the Fábos Fund in partnership with Szent István University, Bdsc09888udapest, Hungary. Professor Emeritus Julius Gy. Fábos is an international leader in greenway planning who taught for over 35 years in the UMass Department of Landscape Architecture and Regional Planning. For more information about Dr. Fábos see http://www.umass.edu/larp/people/julius-gy-fábos.

 

This year’s conference, the 5th Fábos Conference on Landscape and Greenway Planning, Greenways, Corridors of Change and Resilience was held in Budapest, Hungary on June 30-July 3, 2016 and featured over 150 speakers from over thirty countries and five continents. The conference focused on the challenges of rapid social, economic, political and ecological change caused by forces such as urbanization and climate change. These conference papers range from solutions to creating urban greenways in some of the most crowded cities in the world, as well as innovative design solutions for old industrial waterfronts, to historic and cultural trails, such as the Dinosaur Trail for the Connecticut River Valley. The full papers from the conference are available in a two-volume edited proceeding at https://sites.google.com/site/fabos2016/publication.

 

The next Fábos conference will be held in spring, 2019 at the University of Massachusetts at Amherst. For more information, please contact conference co-organizer, Professor Robert L. Ryan at rlryan@larp.umass.edu or Tel. (413) 545-6633.

By: Professor Robert Ryan, PhD, FASLA – UMass Department of Landscape Architecture

 

 

A Seasonal Bicycle Demand Model Using A Sinusoidal Function

As urban populations increase, there is a growing need for efficient and sustainable transportation modes, such as bicycling. Unfortunately, the lack of bicycle demand data is a substantial barrier to efforts in designing, planning, and researching bicycle transportation. Estimating bicycle demand is especially difficult not only due to limited count data, but due to the fact that bicyclists are highly responsive to a multitude of factors, particularly seasonal weather conditions. Current bicycle demand estimation methods are increasingly improving and are capable of accurately adjusting for seasonal change in demand. However, these methods often require substantial data for each calibration, which is often difficult or impossible in locations with partial or minimal continuous count data. This research aims to help mitigate this challenge by developing an estimation method which uses a sinusoidal model to fit the typical pattern of seasonal bicycle demand expected in in many locations. This sinusoidal model utilizes a single calibration factor to adjust for scale of seasonal demand change and is capable of estimating monthly average daily bicycle counts (ADB) and average annual daily bicycle counts (AADB). This calibration factor can be established using a minimum of two short term counts to represent the maximum monthly ADB in summer and minimum monthly ADB in winter, or ideally with continuous counts. The calibration factor can then be applied to other locations that are expected to have similar seasonal patterns, even if they have different overall counts. To develop the model this research uses data from bike-share systems in four cities and permanent bicycle counters in six cities. Ultimately, this model functions as an alternative, or supportive, estimation method which allows for researchers and transportation agencies to approximate expected demand in locations that suffer from minimal seasonal bicycle demand data.

By: Nicholas Fourniera,∗, Eleni Christofaa, Michael A. Knodler Jr. ; UMass Amherst

 

Innovative Strategies for Safer Cycling

Research in progress at the University of Massachusetts underway to evaluate newer bicycle infrastructure treatments such as bike-boxes, merge lanes, and protected intersections to identify patterns around driver behavior and performance when approaching these new innovative bicycle infrastructure treatments. The information collected can then be used to develop countermeasures such as infrastructure geometry, signage, training campaigns, etc. The goal of this information is to promote cycling by mitigating bicycle safety concerns through improving driver awareness at new and unfamiliar bicycle infrastructure treatments. For more information please click here.

By: Eleni Christofa and Nick Fournier