Around and Around for Pedestrian and Cyclist Safety

by Tracy Zafian, Research Fellow, and Courtney Murtagh, UMTC Intern

round2
Bicycle in Roundabout (Source: bikewalkencinitas.org)

Roundabouts were introduced to America’s traffic system as a way to increase traffic safety and support greater traffic volumes without extensive new construction. A roundabout’s circular formation works by making incoming vehicles yield to circulating and exiting traffic. This allows cars to maintain a steady traffic flow through the intersection and not have to come to a complete stop. Roundabouts have been proven to be able to handle up to 50 percent more traffic compared to traditional intersections that use traffic signals or stop signs. Further, due to vehicles’ reduced speeds at roundabouts, crash and injury rates can significantly decrease, especially for motorists. According to the Insurance Institute on Highway Safety (IIHS), studies of U.S. intersections that have switched from stop signs or traffic signals to roundabouts have found a decrease in all traffic crashes of 35-47% and a reduction of injury crashes of 72-80%. The IIHS importantly notes that the U.S. studies have focused primarily on single-lane roundabouts. When included in research studies, two-lane roundabouts have been shown to have smaller reductions in crashes compared with single-lane roundabouts or even with increases in crashes. Crashes at roundabouts have also involved bicycle and pedestrians. Non-motorized road users, such as bicyclists and pedestrians, can face several safety and technical challenges when traveling through roundabouts. These challenges can lead to greater crash risk at roundabouts.  Dr. Eleni Christofa, UMTC Affiliate Researcher Civil Engineering and Professor Aura Ganz of Electric and Computer Engineering from UMass Amherst are studying the safety of visually impaired pedestrians at roundabouts. Visually impaired pedestrians may be used to having auditory cues from traffic and signals at intersections to know when it’s safe to cross. Roundabouts, designed with continuous traffic flow in mind, may not have such cues. Additionally, it can be difficult for drivers to detect pedestrians at a crosswalk while the driver is focused on navigating a roundabout.  Dr. Christofa and Dr. Ganz have developed a new dynamic warning sign to alert drivers entering a roundabout as to where pedestrians are attempting to cross. This sign contains a symbolic traffic circle and symbolic crosswalks for each approach of the roundabout. If a pedestrian is about to cross one of the roundabout’s approaches, they can activate the sign which will then flash to alert drivers where pedestrians are crossing in the roundabout. This is designed to help both with driver awareness of pedestrians and pedestrian safety. The dynamic warning sign will be tested on the UMass Amherst advanced driving simulator this summer. If the sign works as expected, it could be used to help with the safety of pedestrians at roundabouts generally and particularly for the visually impaired and those with mobility impairments who take longer in crosswalks.

 

round
Proposed dynamic warning sign for pedestrian crossings at roundabouts. Pedestrians activate the sign to flash and show where they are crossing to help alert drivers traversing the roundabout to their presence.

One of Dr. Christofa’ s graduate students, Derek Roach, conducted other research on roundabouts for his Master’s thesis. His study looked at the impact of roundabouts from a driver behavior, vehicle emissions, and safety perspective. As part of his research, Roach reviewed other studies that examined the safety of bicyclists and pedestrians at roundabouts. One of these studies found that drivers who are exiting a roundabout are less likely to yield to pedestrians than when the drivers enter the roundabout.  This same study found that as speed increases in roundabouts, drivers are less likely to yield for pedestrians, making it harder and less safe for pedestrians to cross.

In terms of bicyclist safety, Roach examined a number of studies by researcher Stijn Daniels and colleagues in Belgium. Daniels’ work has found increases in the number of bicyclist crashes and in crash severity when intersections are replaced with roundabouts. Other studies have reported potential explanations for these increases. One study, by researcher Bob Cumming in Australia, found that a contributing factor of bicyclist crashes in one lane roundabouts was bicyclists staying very close to the right curb while going through the roundabout, which would lead motorists to try and pass them in the roundabout. In these cases, it is safer for bicyclists to take the main travel lane instead of being so close to the curb.

At the MassDOT’s 2017 Innovation and Tech Transfer Exchange, presenters from Kittelson and Associates gave an overview on bicycles at roundabouts, including a review of bicycle facility design standards and practices in Massachusetts and elsewhere. Each of the MassDOT Highway Districts in the state has at least one roundabout. MassDOT’s guidance for roundabouts gives special attention to rotary retrofits, building roundabouts in constrained environments, and incorporating state-of-the-practice bicycle and pedestrian design into roundabouts. One important current practice is to treat low-traffic volume and high-traffic volume roundabouts differently, to support bicyclist safety. For lower traffic roundabouts, bicycles are encouraged to circulate with motor vehicles. For higher traffic roundabouts, it is encouraged for bicycles to have a protected intersection with a separate bicycle path, and for bicyclists to have the option of either going through the intersection as a vehicle or pedestrian.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s